Left Termination of the query pattern
even_in_1(g)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
Clauses:
even(0).
even(s(X)) :- odd(X).
odd(s(X)) :- even(X).
Queries:
even(g).
We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
even_in(s(X)) → U1(X, odd_in(X))
odd_in(s(X)) → U2(X, even_in(X))
even_in(0) → even_out(0)
U2(X, even_out(X)) → odd_out(s(X))
U1(X, odd_out(X)) → even_out(s(X))
The argument filtering Pi contains the following mapping:
even_in(x1) = even_in(x1)
s(x1) = s(x1)
U1(x1, x2) = U1(x2)
odd_in(x1) = odd_in(x1)
U2(x1, x2) = U2(x2)
0 = 0
even_out(x1) = even_out
odd_out(x1) = odd_out
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
even_in(s(X)) → U1(X, odd_in(X))
odd_in(s(X)) → U2(X, even_in(X))
even_in(0) → even_out(0)
U2(X, even_out(X)) → odd_out(s(X))
U1(X, odd_out(X)) → even_out(s(X))
The argument filtering Pi contains the following mapping:
even_in(x1) = even_in(x1)
s(x1) = s(x1)
U1(x1, x2) = U1(x2)
odd_in(x1) = odd_in(x1)
U2(x1, x2) = U2(x2)
0 = 0
even_out(x1) = even_out
odd_out(x1) = odd_out
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN(s(X)) → U11(X, odd_in(X))
EVEN_IN(s(X)) → ODD_IN(X)
ODD_IN(s(X)) → U21(X, even_in(X))
ODD_IN(s(X)) → EVEN_IN(X)
The TRS R consists of the following rules:
even_in(s(X)) → U1(X, odd_in(X))
odd_in(s(X)) → U2(X, even_in(X))
even_in(0) → even_out(0)
U2(X, even_out(X)) → odd_out(s(X))
U1(X, odd_out(X)) → even_out(s(X))
The argument filtering Pi contains the following mapping:
even_in(x1) = even_in(x1)
s(x1) = s(x1)
U1(x1, x2) = U1(x2)
odd_in(x1) = odd_in(x1)
U2(x1, x2) = U2(x2)
0 = 0
even_out(x1) = even_out
odd_out(x1) = odd_out
EVEN_IN(x1) = EVEN_IN(x1)
ODD_IN(x1) = ODD_IN(x1)
U11(x1, x2) = U11(x2)
U21(x1, x2) = U21(x2)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN(s(X)) → U11(X, odd_in(X))
EVEN_IN(s(X)) → ODD_IN(X)
ODD_IN(s(X)) → U21(X, even_in(X))
ODD_IN(s(X)) → EVEN_IN(X)
The TRS R consists of the following rules:
even_in(s(X)) → U1(X, odd_in(X))
odd_in(s(X)) → U2(X, even_in(X))
even_in(0) → even_out(0)
U2(X, even_out(X)) → odd_out(s(X))
U1(X, odd_out(X)) → even_out(s(X))
The argument filtering Pi contains the following mapping:
even_in(x1) = even_in(x1)
s(x1) = s(x1)
U1(x1, x2) = U1(x2)
odd_in(x1) = odd_in(x1)
U2(x1, x2) = U2(x2)
0 = 0
even_out(x1) = even_out
odd_out(x1) = odd_out
EVEN_IN(x1) = EVEN_IN(x1)
ODD_IN(x1) = ODD_IN(x1)
U11(x1, x2) = U11(x2)
U21(x1, x2) = U21(x2)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 2 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN(s(X)) → ODD_IN(X)
ODD_IN(s(X)) → EVEN_IN(X)
The TRS R consists of the following rules:
even_in(s(X)) → U1(X, odd_in(X))
odd_in(s(X)) → U2(X, even_in(X))
even_in(0) → even_out(0)
U2(X, even_out(X)) → odd_out(s(X))
U1(X, odd_out(X)) → even_out(s(X))
The argument filtering Pi contains the following mapping:
even_in(x1) = even_in(x1)
s(x1) = s(x1)
U1(x1, x2) = U1(x2)
odd_in(x1) = odd_in(x1)
U2(x1, x2) = U2(x2)
0 = 0
even_out(x1) = even_out
odd_out(x1) = odd_out
EVEN_IN(x1) = EVEN_IN(x1)
ODD_IN(x1) = ODD_IN(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN(s(X)) → ODD_IN(X)
ODD_IN(s(X)) → EVEN_IN(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
EVEN_IN(s(X)) → ODD_IN(X)
ODD_IN(s(X)) → EVEN_IN(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- ODD_IN(s(X)) → EVEN_IN(X)
The graph contains the following edges 1 > 1
- EVEN_IN(s(X)) → ODD_IN(X)
The graph contains the following edges 1 > 1